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It is proved in this paper that any state of equilibrium of a medium 
ritb non-vanishing stresses and strains may be regarded as the initial 
state for finite strains and stresses, under a special definition of 
body forces. 

Consider, besides the first initial and the current states of the 
medium. an intermediate state and regard it as a new second initial 
state. We assume that in both first and second initial states the medium 
is in ewilibrium but in contrast to the first, in the second initial 
state there exist strains and stresses. The current state of the medium 
is also stressed and deformed and corresponds in general to a state of 
mot ion. We shall henceforth denote all quantities corresponding to the 
first initial, second Initial and current states of the medium by 
indices 0, l and ” , respectively. 

Denote by E 
ap 

” and p ‘as3 the components of the tensors of finite 
strain and stress, measured from the first Initial state. The ratios of 
the components of the stress tensor to the density of the medium 
P-‘pycQ) = /cB will be called the components of the generalized stress 
tensor. In nonlinear mechanics It is preferable to consider instead of 
the stress tensor the generalized stress tensor, since it is known [l] 
that in the case of elastic deformations the components of the latter 
possess a potential. 

Introduce Instead of quantities E 
istics of tbe strains and stresses 

new tensorial cbaracter- 
in the current state 
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El%3 053 and u which are measured from the second initial state. To this 
end consider a convected Lagrange coordinate system <‘, t2, c3. This 
system is being deformed together with the medium, and consequently the 
components of the metric tensor connected with this system vary in time. 
Denote by to, t*, t” the instances of time corresponding to the above 
states of state of the medium and by g ‘, aj3 g+ g$ the covar iant compo- 
nents of the metric tensor in the convected agrange coordinate system 
at these instances. Then the deformation of the medium in the inter- 
mediate and current states measured from the first initial state is de- 
scribed by the tensors of finite strain E defined by the 
formulas 

It is assumed henceforth that the Greek indices run from 1 to 3. The 
deformation of the medium in the current state measured from the second 
initial state is characterized by the new tensor of finite strain 

eQP = + (g,;r - g,;;) (2) 

Formulas (1) and (2) imply that quantities E& ~4 and E 

the relation 
~43 satisfy 

(3) 

Let (l/p*jp*+ = o*C(rJ be the components of the generalized stress 

tensor in the intermediate state of the medium measured from the first 
initial state. As the generalized stress tensor in the current state 
measured from the second initial state and corresponding to the strain 
tensor x 

4-3 
we can consider the tensor 

Quantities ESQ; and a@ satisfy the above stated condition, namely in 
the second initial state they vanish. 

Let us now examine the conditions under which the stress tensor p ai, 

appears in the equations of motion of the medium in the same way as 
tensor p ‘4. To this end take the equations of motion for the current 

state of the medium and the equilibrium equations for the intermediate 
state in the form [l] 

where a is the acceleration of a particle, F the external force per unit 

mass P P the interior surface force acting on surface with normal np at 



instant tv; F* 
g” = 1941 and 

indices denote 
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are the corresponding quantities at instant t*; 

In formulas (5) and in what follows repeated 

Denote now by 8,. and 8,” the vectors of the covariant bases of the 

Lagrange coordinate system at instances t* and tV. The changes of these 

vectors in passing from one particle of the medium to another are de- 

scribed by the relations [2] 

(6) 

where r’ 
ap 

y and ryey are the Christoffel symbols defined by the 

formulas 
(7) 

g .ya 
a g 

g&. 

“Ya being the contravariant components of the metric tensors g$, 

Representing the vectors entering equations (5) in the form 

F = FYaava, a = ayasv~, pa = p” afl, * ~, F+ = F+%,*, p* = p*a%a* (8) 

carrying out the differentiation, and making use of relations (6), we 

readily observe that each equation (5) is equivalent to three scalar 

equations 

p ‘t/F(F”U --c”=) + (9) 

of 

Constructing the difference of equation (9) and (lo), and making use 

formulas (4) and the continuity equation 

we arrive at the equations 

(12) 

where 
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Equation (12) is analogous to the equations of motion of the medium 

(9) but it contains the new stress tensor and a new body force. 

Thus. if instead of the stress tensor p “* we e 

tensor p C@ defined by formulas (4). 

mploy the stress 

the equations of motion of the 

medium remain valid in the same form, provided the body force is defined 

by (13). Thus, if we use the latter definition the body force vanishes 

in the second initial state. In general in the current state the body 

force depends on the internal stresses in the second initial state and 

on the nature of the subsequent deformation. 

Let us express the body force in terms of the characteristics of the 

displacement of the medium from the second initial state to the current 

state. To this end let us transform the difference rVan - rba in the 

expression for the force (13). “t: oP The decompositions of t e vectors of one 

of the bases ea*, a’, in the second basis have the form 

e” ~ = c*;3_+, e*=c”” w 
0 as 0 (14) 

This implies that for the coefficients of the above decomposition we 

have the relations 

C 
“OT l w 

,C y = bay’ 
C”= tw ,c y = tiay (15) 

The tensors with components c*: and c”: describe an arbitrary dis- 

placement of the medium from the second initial state to the current 

state. 

since transformations (14) are both one-to-one we have 

Ic*:I#% lc’:l#o (16) 

The quantities c*: and ~‘“0 can be expressed in terms of the compo- 

nents of the corresponding displacement vector 

w = w*=s+, = to* B s *P = w”“a” ==wV sa’i 

where s*O and svp are the vectors 

t* and TV by the formulas [2] 

c*; = a*, + VJ+~~*~, 

where 

of the contravariant bases at instances 

C v=_-p 
o- 0 

- V’,w’” ($7) 

(18) 

Relations (6) and (14) lead to 
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By means of the relationships 

8c*- 
,“sc’~ = -$j + “*;I?,; - c*;r**;, 

a&-t 
v*~c”~ = agP + c yr;; - C yr-,; 

and formulas (15) and (17) they can be written in the form 

or 

where 

(22) 

Consequently 

P =F”” _ Ji’*=+ ~*‘sv*,,‘O*,#” (ba, _ V ” o~ v “) = F” OT _ F*z + 

+c+v V” w”“((@ @ l .o +v* Nn) (23) 

Consider the deformation of the medium from its intermediate state 
to the current state. This deformation may be described by one of the 
tensors of finite strain e* = e,p3*a3*b or E” = Qp%-. Tensor E* is 
referred to the basis corresponding to the second initial state. while 
tensor E” to the basis of the current state. 

Assume that the deformation considered is homogeneous. For the condi- 
tion of homogeneity of the deformation we can take the condition that 
either tensor E* or tensor EV is constant for all particles of the 
medium. This leads to the relations 
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The Lagrange coordinate system at any fixed instance of time can be 

taken in an arbitrary way. If we assume that it is a rectangular 
Cartesian system at instant t*, then conditions (24) take the form 

2=0 (26) 

Conditions (25) thereby are not altered. If we now assume that the 
Lagrange coordinate system is a rectangular Cartesian system at instant 
t” conditions (24) are unchanged whereas conditions (25) take the form 

(26). Conditions (24) and (25) are not independent: if one is satisfied 

the other is also satisfied. We now prove this statement, 

According to the definition g*# = e*a.s*B and gvap = a”,-apv. Aence, 

in view of formulas (14) we have 

g “a* = c+a,C*5pg*Ol, g*& = Cva aCvTpL 

and therefore for components E 
4 

we have the expressions 

I (c*“& - V,V,) g*,, = f @“,a’ SaP = 3 - c ‘“,c ” ‘s, g ” afi (27) 

In view of formulas (27) and (17) conditions (24) and (25) can be 

written in the form 

v**s,p = ; (c*~P~*y~*cIw+~ + C*aOLv*yG*pW*J = 6 (28) 

V’ Y %P =~(c~;;)V-,V-,w-,+c~~,V’lV’pw-,)=O (2% 

Since the motion of the medium takes place in Euclidean space the 

components v* V*~W*~ 

a and y. K 

and vv ~vawvo are symmetric with respect to indices 

Furt er, it is readily observed that both (28) and (29) contain 

18 independent relations. COnSeClUentlY, relations (28) and (29) can be 

regarded as two systems, each containing 18 homogeneous algebraic Wua- 

tions for 18 unknown quantities v* u* I* in the first system and the 

same number of unknown quantities y~““o*“, Y in the second system. Con- 

sider system (28). It is easy to provi t:atOthe determinant of the 

system 

is different from zero in 

zero solution 

It is readily observed 

D = 1 c*; 1’ (30) 

view of (16). Hence, system (28) has Only the 

v*clV*pW*y = 0 (3%) 

that, conversely, relations (31) imply 
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relations (23), i.e. all quantities v*y~~ and all quantities ~*o~‘p~*~ 
vanish simultaneously. 

A similar reasoning makes it possible to prove that quantities 
D~oV*F”‘r vanish together with vvY~+. 

Suppose now that conditions (24) are satisfied. It was proved above 

that they are equivalent to conditions (31). Hence 

On the basis of the relations 

c*u v BV ,w,* =c a 
0 

o v*pv*aw*w 
following from expressions (19) and (20) and conditions (32) and (16), 
we infer that 

vv@vgwr%z 0 

and therefore 

The latter relations are equivalent to conditions (25). 

Thus, it has been proved that conditions (25) follow from conditions 
(24). Similarly we can prove that, conversely, conditions (24) can be 
derived from (25). 

Conditions (24) should be used when the investigation is carried out 
on the basis of the characteristics referred to the basis of the second 
initial state, and conditions (25) when the characteristics are re- 
ferred to the basis of the current state. 

When the deformation is homogeneous the components of the body force 
(23) take, in view of (32) or the equivalent relations (34), the form 

i.e. the body force is independent of the initial stresses. 

Thus, the dependence of the body force on the internal initial 
stresses is connected with the nonhomogeneity of the deformation. 

Consider now the conditions under which it is legitimate to neglect 
the dependence of the body force on the internal stresses in the case of 
a nonhomogeneous deformation and the conditions under which this 
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dependence is relavant. 

If the initial stresses are small, in the expression (23) for the 
body force the terms containing stresses can be neglected. Then formula 
(23) takes the same form (36) as in the case of a homogeneous deforma- 
tion. 

Let us now assume that the initial stresses are not small and eon- 
sider the cases when the deformation of the medium from the basis a*. 
to the basis eyQ, is either finite or small. 

In the first case, when the deformation is finite the displacements 
are also finite and it is clear from formulas (23) that the dependence 
of the body force on the initial stresses is to be taken into account. 

Examine now the second case. The deformation is small if the compo- 
nents of the tensor of finite deformation (E* or E”) are small or if 
the displacements of the particles of the medium and their derivatives 
with respect to the coordinates are small. 

If components fcrf, are small, the displacements in general are not 
small 133, and consequently, in general the conditions of the first case 
occur. 

If now both the displacements and their first derivatives with re- 
spect to coordinates are small, then the dependence of the force on the 
stresses may be neglected. In fact, in view of formulas (21) (or (22)) 
in this case the quantities v* v*q~*o 

P 
(or OvpoYo~v~) are also small. 

consequently, in the expression for the force (23) all terms containing 
stresses are small. Neglecting these terms we can determine the force 
in accordance with formulas (36). It is readily observed that in this 
case the deformation of the medium is not much different from the hono- 
geneous deformation. 

Thus, the dependence of the body force on the initial stresses has 
to be taken into account both when the deformation is finite and in the 
general case of geometrically linear theory. This dependence may be 
neglected if the initial stressses are small or the deformation of the 
medium differs little from the homogeneous deformation. 

The dynamic equations (12) examined before are valid for continuous 
media with arbitrary physical properties. !Te now proceed to prove that 
for an elastic medium the new tensorial characteristics of the deforma- 
tions and stresses E+ and aP a measured from the second initial state 
are connected by the familiar relations of the linear theory of elasti- 
city Ill 

(37) 



Itcformd and stressed states of a mediun 193 

here (I is the internal energy of unit mass of the medium, correspond- 
ing to the new definition of the initial state; it can be represented 
in the form 

U = uv ($0, - 2s*0r, 

where Uv(goov, E”~, Sl is the 
initial state without stresses 
the medium. 

etor + s,,, S ” I- a*“@ bfaB + e,p) 

internal energy defined for the original 
and deformations. S” is the entropy of 

To prove the statement let us fix the initial and intermediate states 
of the medium and assume that the current state can change. Assume that 
the state of the medium is determined by the following parameters: the 
tensor of finite strain with components E”co, and the entropy S”. 

Consider the elementary process corresponding to the increments dS” 
and d.sV 

o? 
of the basic parameters. According to the equation of heat 

flow for a unit mass of the medium we have 

dQY I= dU” - ay ap dev ao (391 

where L@’ is the external flow of heat, and the internal energy is a 
function of the basic parameters E”~, Sv. 

Since the intermediate state is fixed, the quantities f*= and (~9~ 
can be regarded as constant quantities. hence, from 13) we have 

ds’,g = deap (m 

For reversible processes 

dQ’=T’dS” WI 

where TV is the absolute temperature of a fixed particle of the medium. 
Formulas (3), (4) and (39) to (41) lead to the relation 

function I! being defined by ‘formula (38). The increments de+, and liS” 

are arbitrary and independent and, consequently, relations (43) impiy 
besides the definition of temperature, the constitutive equations (37). 
These results prove tbe statement. 

Thus, the conponents of the generalized stress tensor o@ possess a 
potential. 

Consider now an elastic-plastic medium. Let us establish the condi- 

tions under which the inequality 
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is valid; this inequality is known in the literature as Drucker’ s postu- 

late [41. 

Examine three different states of equilibrium of the medium: the 

first initial state II’, the second initial state R+ and the current 

state Bv. State Do is described by zero stresses and strains. States B* 

and BV have in general internal stresses and strains. Be assume that 

state BV is obtained from B* by an additional deformation described by 

the tensor of finite strain with components Ed), 

In investigating plastic strains the total strain is regarded as the 

sum of the elastic and plastic strains 

e+ a@= E *@ + e*f$, a@ Lap = EV& + E”& %p = E ap e + EP,p (44) 

the index e corresponding to the elastic and the index p to the plastic 

strain. The properties of the medium before and after the Plastic de- 

formation are in general different. Following [I] we assume that a change 

of the mechanical and thermal properties of the medium is due to the 

residual strains and can be described by means of the covariant comno- 

nents of the tensor of residual strain Ep 
4 

and parameters &(s=l,...Se), 

connected either with the residual strains or with the loading processes. 

Quantities x, depend on the loading process in general in a functional 

way. consequently, we consider the internal energy of the medium as a 

function of the parameters 

u = U” [g*iT -2 (a*“,, + E*$~:,), s*zT -t_ e’zr + se,, f sPG,, A’” 7 X” s> kil- 

- S*as (&*;B + 9*gp + aezxp + sr&) (45) 

where ki(i = 1, . . . . n) are physical constants. 

Let us fix the states B* and R* and consider a process corresponding 

to small increments of the parameters from state R”. Making use of the 

equation of heat flow we obtain 

Relation (46) is valid for 

Envisage first the reversible 

state R”. We have 

a@ dS” + ac; dx” s - a@ deezp - 8 dePaB (46) 
ax s 

any reversible or irreversible Process. 

process corresponding to unloading from 
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devp -0 aQ-- 7 dXYs = 0, dQv =T”dS” (47) 

and (46) and the assumption of independence of increments dEe+ and dSV 

imply equations 

T* - a’ 
as' ’ 

,aP - 811 

aeeap 
(48) 

Consider now the elementary process corresponding 

loading from state R”. Here in general 

to the plastic 

dev:p # 0, &_A% dQ* CT- dSv -dQ- (49) 

where do” is the non-compensated heat. Relation (46) with conditions 

(48) and (49) takes the form 

au oap dePtip = dQ*‘+ - 

aepClp 

deP,p+zdxvs 

ax s 

If function U in state R” has a minimum with respect 

EPCIP 
and xvs we have 

K depap + z 

a&3 ax 8 

dx”s>, 0 

cm 

to parameters 

(51) 

since go@ = o”* - o** and d(j”’ >, 0 it is readily observed that (50) 

and condition (51) imply inequality (43). 

Thus Drucker’s postulate follows from the laws of thermodynamics and 

the assumption that the internal energy of the medium in the considered 

state has a minimum with respect to the parameters describing the irre- 

versibility of the processes. 
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