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It is proved in this paper that any state of equilibrium of a medium
with non-vanishing stresses and strains may be regarded as the initial
state for finite strains and stresses, under a special definition of
body forces.

Consider, besides the first initial and the current states of the
medium, an intermediate state and regard it as a new second initial
state. We assume that in both first and second initial states the medium
is in equilibrium but in contrast to the first, in the second initial
state there exist strains and stresses. The current state of the medium
is also stressed and deformed and corresponds in general to a state of
motion. We shall henceforth denote all quantities corresponding to the
first initial, second initial and current states of the medium by
indices 0, * and ¥ , respectively.

Denote by Eaﬁv and pvaﬁ the components of the tensors of finite
strain and stress, measured from the first initial state. The ratios of
the somponeets of the stress tensor to the density of the medium
p"p B =, will be called the components of the generalized stress
tensor. In nonlinear mechanics it is preferable to consider instead of
the stress tensor the generalized stress temsor, since it is known [1]
that in the case of elastic deformations the components of the latter
possess a potential.

Introduce instead of quantities € v and cv“p new tensorial character-
istics of the strains and stresses in the medium in the current state

185



186 V.D. Bondar’

€ and U"“3 which are measured from the second initial state. To this
end consider a convected Lagrange coordinate system §1. §2. §3. This
system is being deformed together with the medium, and consequently the
components of the metric tensor connected with this system vary in time.
Denote by t°, t*, t¥ the instances of time corresponding to the above
states of state of the medium and by g 2, g, g.« the covariant compo-
nents of the metric tensor in the convected Lagrange coordinate system
at these instances. Then the deformation of the medium in the inter-
mediate and current states measured from the first initial state is de-
scribed by the tensors of finite strain Eué and Eaﬁ defined by the
formulas

° v 1 v ©
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It is assumed henceforth that the Greek indices run from 1 to 3. The
deformation of the medium in the current state measured from the second
initial state is characterized by the new tensor of finite strain

1 v .
€8 =9 (gaB — Eqp) 2

Formulas (1) and (2) imply that quantities Eaé' Eqé and eqﬁ satisfy
the relation

&p = ean-— ea; 3)
Let (l/p‘)p‘aﬁ = cr‘(x‘3 be the components of the generalized stress
tensor in the intermediate state of the medium measured from the first
initial state. As the generalized stress tensor in the current state
measured from the second initial state and corresponding to the strain
tensor Eaﬁ we can consider the tensor
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Quantities € and 009 satisfy the above stated condition, namely in
the second initial state they vanish,

Let us now examine the conditions under which the stress tensor paﬁ
appears in the equations of motion of the medium in the same way as
tensor py . To this end take the equations of motion for the current
state of the medium and the equilibrium equations for the intermediate
state in the form [1]

- =< B . o (V #*p*P .
p‘/g\‘(p_ﬁa)_}_.a._(.za%;_p_!:o’ p.Vg‘F._*——(_‘Va;gB_p_l:O (3)

where a is the acceleration of a particle, F the external force per unit
mass p” the interior surface force acting on surface with normal nB at
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instant tv; F* and p'B are the corresponding quantities at instant t*;
gv = Ig Vl and g* = Ig ‘|. In formulas (5) and in what follows repeated
indices denote summation.

Denote now by 3.,* and ®,” the vectors of the covariant bases of the
Lagrange coordinate system at instances t* and tvY. The changes of these
vectors in passing from one particle of the medium to another are de-
scribed by the relations [2]

aa’ o o - .
a;,“ =T Py =5 =I5 (6)
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where r'oBY and FVOBY are the Christoffel symbols defined by the
formulas

)
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g*Y%, ¢ Y% being the contravariant components of the metric tensors gaé,
Eop-

Representing the vectors entering equations (5) in the form
F=F"%" a=a %" pP=p %" Fe=F*% %  pr=p*fy * (8

carrying out the differentiation, and making use of relations (6), we
readily observe that each equation (5) is equivalent to three scalar
equations

— v v a g p % — vefpYa
PVE (FT*—a “)+—(1§?"—)+Vm“l‘ua=° ©
— F] 2% peaB _ .
p* Vg'F‘“+(L:§Bp—) + Verfr,5=0 (10

Constructing the difference of equation (9) and (10), and making use
of formulas (4) and the continuity equation

pVe =p*Ve* (11)
we arrive at the equations

3 (Ve'pr*®)

PVE  (R*—a %)+ 5P

+ Ve pPr §=0 (12)
where

R® — F"u — Fe® + G.GB (I‘» oz _ r.oz) (13)
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Equation (12) is analogous to the equations of motion of the medium
(9) but it contains the new stress tensor and a new body force.

Thus, if instead of the stress tensor pVOIB we employ the stress
tensor p°‘p defined by formulas (4), the equations of motion of the
medium remain valid in the same form, provided the body force is defined
by (13). Thus, if we use the latter definition the body force vanishes
in the second initial state. In general in the current state the body
force depends on the internal stresses in the second initial state and
on the nature of the subsequent deformation.

Let us express the body force in terms of the characteristics of the
displacement of the medium from the second initial state to the current
state. To this end let us transform the difference %, — %, in the
expression for the force (13). The decompositions of the vectors of one
of the bases a,* 8", in the second basis have the form

8", =c*;3,", 9, =c"Pa" (14)

This implies that for the coefficients of the above decomposition we

have the relations

v * v a
cvac y =207, e aery =0%, (15)
The tensors with components c‘g and Cvg describe an arbitrary dis-

placement of the medium from the second initial state to the current

state.

Since transformations (14) are both one-to-one we have

fe*s |#0, [e"Gl=+0 (16)

The quantities c‘g and cvg can be expressed in terms of the compo-
nents of the corresponding displacement vector
w = w*%a*, .—:w'as"‘a =w %" = w"ﬁa"‘-1
where 3* and »”P are the vectors of the contravariant bases at instances
t* and tv by the formulas [2]

o*G = 8% +V*w*, ¢g =0 -V " (1n
where
a *u, aw Ve v v
v‘ow'm = :ga + w‘)‘r*)ﬁ' vvcwvm = aEG + w lr )f: (18)

Relations (6) and (14) lead to
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B>, 8¢
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By means of the relationships
de* ora v m e~ vepe v
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and formulas (15) and (17) they can be written in the form

o — T2 = ¢7 2,V 0e%G = (0%, — V" 0" ) V¥Vt o*” (19)
or
T f— T = — e,V e s = (8% + V4w V'V " ® (20)
where
6”w""’ aw v v o o v
VAVttt = e aév Bpl*\g + 8T %5 — 85 T*p) +
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Consequently

R = P — Fop %730t v (0%, — V" ™ %) = FY 2 — F** 4
_%_6*03§7\18§7~v‘}0th(5“0"F ‘7*030*“) (23)

Consider the deformation of the medium from its intermediate state
to the current state. This deformation may be described by one of the
tensors of finite strain e*=re,ga* ** or " =g,3 %" %, Tensor e+ is
referred to the basis corresponding to the second initial state, while
tensor €v to the basis of the current state.

Assume that the deformation considered is homogeneous. For the condi-
tion of homogeneity of the deformation we can take the condition that
either tensor e€* or tensor ev is constant for all particles of the
medium. This leads to the relations

82;3
V*Yeaﬁ = a_E-Y. - mBr* - amF‘Bo-; =0 (24‘
. aeaﬂ rv o v @ 5
v ‘YSQB:-@".SQB ay ™ Caul By = 0 (25)
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The Lagrange coordinate system at any fixed instance of time can be
taken in an arbitrary way. If we assume that it is a rectangular
Cartesian system at instant t*, then conditions (24) take the form

6saB
BEx = 0 (26)

Conditions (25) thereby are not altered. If we now assume that the
Lagrange coordinate system is a rectangular Cartesian system at instant
tY, conditions (24) are unchanged whereas conditions (25) take the form
(26). Conditions (24) and (25) are not independent: if one is satisfied
the other is also satisfied. We now prove this statement.

According to the definition g* = a*,-9*; and gvap = a‘a-aB'. Hence,
in view of formulas (14) we have

v — 40 kT g% * e avO vT gV
4 aﬁ—c af Bgar’ 87ap =€ 4€ Bg ot

and therefore for components Ecﬁ we have the expressions

1. 1 v v v
€p=Tg (C*"aC*E - 601613) 8% = o (boaS‘ — "% tB) 8 op @7

In view of formulas (27) and (17) conditions (24) and (25) can be
written in the form

1
T, 8ap = g (FV*, Vw0 + o+, VIV w?,) =0 (28)
1' v A4 v v v v v
VVYEQB:-Q‘(CVEV AV . “’aV -YV g¥ w =0 {29)

Since the motion of the medium takes place in Euclidean space the
components V* Vs w+ = and V“YVWGWVm are symmetric with respect to indices
a and vy. Furtzer, it is readily observed that both (28) and (29) contain
18 independent relations. Consequently, relations (28) and (29) can be
regarded as two systems, each containing 18 homogeneous algebraic equa-
tions for 18 unknown quantities V= Ve w*  in the first system and the
same number of unknown quantities V¥ V'awvw in the second system. Con-
sider system (28). It is easy to prove that the determinant of the

system
D= ‘C*El‘ (30)

is different from zero in view of (16). Hence, system (28) has only the
zero solution

V*a‘V‘aw"y =0 (31)

It is readily observed that, conversely, relations (31) imply
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relations (28), i.e. all quantities Y“qup and all quantities v&avwﬂw-y
vanish simultaneously.

A similar reasoning makes it possible to prove that quantities
v : i v
Vﬂ;? BwVY vanish together with V Ve

Suppose now that conditions (24) are satisfied. It was proved above
that they are equivalent to conditions (31). Hence

v*av*ﬂw*m - g*myv*av*ﬁw*Y -0 (32)
On the basis of the relations
C*auv ﬂv Gw(; = Zv*ﬁvtdw*m (33)

following from expressions (19) and (20) and conditions (32) and (16),
we infer that

V Vg 0 =0 (34)
and therefore
VT gt =8 oV Vg =0 (35)
The latter relations are equivalent to conditions (25).

Thus, it has been proved that conditions  (25) follow from conditions
(24). Similarly we can prove that, conversely, conditions (24) can be
derived from (25).

Conditions (24) should be used when the investigation is carried out
on the basis of the characteristics referred to the basis of the second
initial state, and conditions (25) when the characteristics are re-
ferred to the basis of the current state.

When the deformation is homogeneous the components of the body force
(23) take, in view of (32) or the equivalent relations (34), the form
R® = Fva __ p*x {36)
i.e. the body force is independent of the initial stresses.

Thus, the dependence of the body force on the internal initial
stresses is connected with the nonhomogeneity of the deformation.

Consider now the conditions under which it is legitimate to neglect
the dependence of the body force on the internal stresses in the case of
a nonhomogeneous deformation and the conditions under which this



192 V.D. Bondar’

dependence is relavant.

If the initial stresses are small, in the expression (23) for the
body force the terms containing stresses can be neglected. Then formula
(23) takes the same form (36) as in the case of a homogeneous deforma-
tion.

Let us now assume that the initial stresses are not small and con-
sider the cases when the deformation of the medium from the basis 2*

to the basis » ., is either finite or small.

In the first case, when the deformation is finite the displacements
are also finite and it is clear from formulas (23) that the dependence
of the body force on the initial stresses is to be taken into account.

Examine now the second case. The deformation is small if the compo-~
nents of the tensor of finite deformation (&* or €vY) are small or if
the displacements of the particles of the medium and their derivatives
with respect to the coordinates are small.

1f components € are small, the displacements in general are not
small {3], and consequently, in general the conditions of the first case
occur.

1f now both the displacements and their first derivatives with re-
spect to coordinates are small, then the dependence of the force on the
stresses may be neglected. In fact, in view of formulas (21) (or (22))
in this case the quantities VepVe we® (or Wvgv wv”) are also small.
Consequently, in the expression for the force (23) all terms containing
stresses are small. Neglecting these terms we can determine the force
in accordance with formulas (36). It is readily observed that in this
case the deformation of the medium is not much different from the homo-
geneous deformation,

Thus, the dependence of the body force on the initial stresses has
to be taken into account both when the deformation is finite and in the
general case of geometrically linear theory. This dependence may be
neglected if the initial stressses are small or the deformation of the
medium differs little from the homogeneous deformation.

The dynamic equations (12) examined before are valid for continuous
media with arbitrary physical properties. e now proceed to prove that
for an elastic medium the new tensorial characteristics of the deforma-
tions and stresses e.n and o measured from the second initial state
are connected by the familiar relations of the linear theory of elasti-

city [1]
oUu
&P~ —az;'; 37
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Here U is the internal energy of unit mass of the medium, correspond-
ing to the new definition of the initial state; it can be represented
in the form

Uv=U" (g*d‘t — 28’01. gar + &, Sv) —g*ep (3.:.:,8 + 8“3) (38)

where Uv(goaT, sch, S§ is the internal energy defined for the original
initial state without stresses and deformations. SY is the entropy of
the medium.

To prove the statement let us fix the initial and intermediate states
of the medium and assume that the current state can change. Assume that
the state of the medium is determined by the following parameters: the
tensor of finite strain with components evaﬁ and the entropy S.

Consider the elementary process corresponding to the increments dSY
and devdp of the basic parameters. According to the equation of heat
flow for a unit mass of the medium we have

dQ" =dU” —c *Pde” (39

where dQ” is the external flow of heat, and the internal energy is a
function of the basic parameters €% ., SV
Since the intermediate state is fixed, the quantities E"U.r and o+%7

can be regarded as constant quantities. llence, from (3) we have
de” .5 = deyg (40)
For reversible processes
dQ¥ =T~ ds” (41)
where TV is the absolute temperature of a fixed particle of the medium.
Formulas (3), (4) and (39) to (41) lead to the relation
dU:-—-g-é% deap-;.%'; dS" =T "aS" + o*F ge,, 42)

function !/ heing defined by formula (38). The increments de o and dSY
are arbitrary and independent and, consequently, relations (42) imply
besides the definition of temperature, the constitutive equations (37y.
These results prove the statement.

)
Thus, the components of the generalized stress tensor o%’ nossess a
potential.

Consider now an elastic-plastic medium. Let us establish the condi-
tions under which the inequality
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(Gv aB __ G*aﬁ) depaﬁ >0 43)

is valid; this inequality is known in the literature as Drucker’s postu-
late [4].

Fxamine three different states of equilibrium of the medium: the
first initial state 5°, the second initial state B* and the current
state BY. State B® is described by zero stresses and strains. States B*
and BY have in general internal stresses and strains. We assume that
state BY is obtained from B* by an additional deformation described by
the tensor of finite strain with components Ea@-

In investigating plastic strains the total straipn is regarded as the
sum of the elastic and plastic strains

v

etp=e"pt el e = e st B gug =t P (44)

the index e corresponding to the elastic and the index p to the plastic
strain. The properties of the medium before and after the plastic de-
formation are in general different. Following [1] we assume that a change
of the mechanical and thermal properties of the medium is due to the
residual strains and can be described by means of the covariant compo-
nents of the tensor of residual strain e”_, and parameters Xe(s=1,...,8),
connected either with the residual strains or with the loading processes.
Quantities Xs depend on the loading process in general in a functional
way. Consedquently, we consider the internal energy of the medium as a
function of the parameters

U=0" (g%, —2(", +e"0), e" + &0 + e + 5. 5,1 o ki]l—
— " (" + 20+ up - Fap) (45)

where ki(i =1, ..., m) are physical constants.

Let us fix the states B° and BR* and consider a process corresponding
to small increments of the parameters from state B8Y. Making use of the
equation of heat flow we obtain

v

4aQ

— U et O aemg oy S asv b 2 ay — oy — P el (46)
08, 3spaﬁ A
Relation (46) is valid for any reversible or irreversible process.
Fnvisage first the reversible process corresponding to unloading from
state BY. We have
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deP =0, dy ,=0, dQ" =T ds” (47)

and (46) and the assumption of independence of increments deeap and ds"
imply equations

— o*P = 6i/ (48)
as oe ap

Consider now the elementary process corresponding to the plastic
loading from state BY . Here in general

v

de"Py 40, dy ,#0, dQ =T dS —dQ (49)

where dQv' is the non-compensated heat. Relation (46) with conditions
(48) and (49) takes the form

P dsPy = dQ" + U ae?, + Y ay (50)
LI N

If function U in state BY has a minimum with respect to parameters
Epaﬁ and xv, we have

ou
oU def 5 +

—dy
0e¥ g i

=0 (51)

8
8

v ’
Since 00‘Q =g aﬁ - o‘q13 and dQv =0 it is readily observed that (50)
and condition (51) imply inequality (43).

Thus Drucker’s postulate follows from the laws of thermodynamics and
the assumption that the internal energy of the medium in the considered
state has a minimum with respect to the parameters describing the irre-
versibility of the processes.
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